
   
 

1 
 

Hear Ye, Bear Ye: Housing Prices, Noise Levels, and Noise Inequality 
 

Jeffrey P. Cohen 

University of Connecticut – Professor; Institute for Economic Equity, Federal Reserve 
Bank of St. Louis – Research Fellow; St. Louis University – Senior Research Fellow 

Cletus C. Coughlin  

Federal Reserve Bank of St. Louis – Emeritus; St. Louis University – Senior Research 
Fellow 

Felix Friedt 

Macalester College – Associate Professor 

Abstract: We explore the relationships between house prices and transportation noise 
in a comprehensive manner – in Census tracts across the entire U.S. as well as 
separating road and aircraft noise. Using a panel of tract-level noise data for two years 
(2016 and 2018), along with American Community Survey data on demographics, 
house prices, and property characteristics, we first explore which tracts, states and 
demographic groups have residents who experience disproportionate amounts of noise. 
Then we use a 2017 federal government announcement of quieter commercial aircraft 
engine noise requirements, as a quasi-experiment to test the hypothesis that this 
requirement caused a structural shift in the effects of aircraft noise on house prices. We 
also test the hypothesis that the requirement led to differential changes across 
demographic groups in the effects of noise on house prices.  We find average house 
prices in tracts with aircraft noise above 50 decibels do not significantly change after the 
announcement. But we also find that increases in the Black population in tracts with at 
least 50 decibels of noise, after the announcement, experience significantly higher 
house price increases relative to the baseline, while the opposite is true for higher 
Hispanic populations in these noisier tracts. Quantile regressions indicate the positive 
effect for higher Black population tracts only holds in the 75th quantile, while the 
negative effect for higher Hispanic population tracts holds throughout the 25th, 50th, and 
75th quantiles. 
 

Draft: 1/3/2024 

Keywords: house prices, noise, inequality, quantile regression 
Acknowledgements: We thank Andrew Spewak and Brandon Peate for excellent research assistance, 
and seminar participants at the St. Louis Fed’s Institute for Economic Equity, and at Saint Louis 
University. Cohen acknowledges support for this work from the Institute for Economic Equity, Federal 
Reserve Bank of St. Louis. Any errors are the authors’ responsibility. This paper represents the views of 
the authors and not necessarily those of the Federal Reserve Bank of St. Louis, the Federal Reserve 
Board, or the Federal Reserve System. 

  



   
 

2 
 

Introduction 

Documenting disproportionate noise pollution exposure, and considering the 
relationships between such noise, house prices (that is, affordability), and 
demographics, are important issues in U.S. urban areas. Which demographic groups 
bear the most road and aviation noise throughout the U.S., and are lower priced (more 
affordable) houses associated with more noise? These are the two important focus 
questions of this paper that have not been thoroughly examined at the Census tract 
level using comprehensive micro-data for road and aviation noise in the contiguous 
United States.  

Road and aviation noise are pervasive disamenities for those living and working in 
urban areas. Levels of noise are important because excessive noise can have harmful 
effects on health (via sleep disruption and hearing deterioration), as well as on learning 
and household income.1 2 Reducing road traffic through urban areas (Chandioa et al., 
2010) is one potential way to address racial and ethnic disparities in noise pollution 
exposure. However, a thorough understanding of where the noise is, whether it occurs 
in areas with more (or less) affordable house prices, and who bears the greatest burden 
are important first questions to understand before sustainable planning can be 
implemented in a broad sense.  

A large real estate economics literature demonstrating the extent to which noise, 
especially noise stemming from airports, is negatively related to home prices exists 
(e.g., Breidenbach et al., 2022; Cohen et al., 2023). However, little research focuses on 
the questions of how lower-priced homes are correlated with noise in the context of the 
associated demographic distributions of noise burdens. 

Related to the issue of noise levels and willingness to pay for noise avoidance is the 
distribution of noise across groups.  In other words, are White, Black, and Hispanic 
residents subjected to differing degrees and how does this impact house prices? An 
unequal distribution of noise raises potential environmental justice issues.  According to 
the U.S. Environmental Protection Agency:3 

 
1 Swoboda et al. (2015) identified the following health-related effects: 1) simple annoyance, 2) 
sleep disturbance, 3) increasing risk for stroke, 4) hypertension, 5) myocardial infarction, 6) 
overall quality of life.  For specific references examining these effects, see Cohen et al. (2019).  
With respect to airport noise, Issing and Kruppa (2004) highlight that even while sleeping the 
noise from airplanes may lead to the release of stress hormones that increase the risk of heart 
attacks.  This conclusion is reinforced by Lefѐvre at al. (2017) in their study of aircraft noise in 
France. 

 
2 While the adverse consequences of noise on health have received relatively more attention, 
Trudeau and Guastavino (2021) note that sound can be a restorative resource.  In other words, 
access to a soothing sound environment can produce positive health results.  
3 See https://www.epa.gov/environmentaljustice 

https://www.epa.gov/environmentaljustice
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“Environmental justice is the fair treatment and meaningful involvement of all people 
regardless of race, color, national origin, or income, with respect to the development, 
implementation, and enforcement of environmental laws, regulations, and policies. 
This goal will be achieved when everyone enjoys: 

• The same degree of protection from environmental and health hazards, and 
• Equal access to the decision-making process to have a healthy environment in 

which to live, learn, and work.” 

 

In the context of the U.S. Department of Transportation (DOT), Order 5610.2(a) requires 
that environmental justice must be considered in all their programs, policies, and 
activities.4  

 
For road and aviation noise, both the levels and distribution of the burden of such noise 
are important considerations.  Noise in the U.S. is measured by most planners in units 
of DNL, which are estimates of the decibels of day-night average sound levels. The 
decibels (dB) scale is logarithmic, which implies the noise level is given as 10^(dB/10).   
Applying this formula, the linear level of noise (relative to 0 dB) is 1.0 for 0 dB. The U.S. 
Federal Register (2000) describes annoyance as the adverse psychological response to 
noise, and notes that 12 percent of people subjected to a DNL of 65 dB report that they 
are “highly annoyed” while 3 percent are “highly annoyed” with DNL of 55 dB. A much 
larger share of individuals (40 percent) are highly annoyed at DNL of 75 dB. The U.S. 
Federal Aviation Administration (FAA) currently uses a cutoff of 65 dB as normally 
“compatible” with residential use (FAA, 2018).   

For levels of noise that pose no threat to sleeping and learning (which in turn, have no 
impact on health or willingness to pay by homeowners to avoid noise), then sustainable 
planning actions to mitigate noise inequality are likely unnecessary. But for excessive 
noise levels, both the levels and distribution of noise across groups pose policy issues.   
 
Finally, one way in which the FAA may have attempted to reduce noise exposure was 
with a 2017 announcement of a noise reduction requirement for Stage 5 aircraft 

 
 
4 See DOT Order 5610.2(a) (Actions to Address Environmental Justice in Minority Populations 
and Low-Income Populations) – 2012.  https://www.transportation.gov/transportation-
policy/environmental-justice/department-transportation-order-
56102a#:~:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20pol
icy%20formulation 

 

https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
https://www.transportation.gov/transportation-policy/environmental-justice/department-transportation-order-56102a#:%7E:text=DOT%20Order%205610.2(a)%20sets,%2C%20rulemaking%2C%20and%20policy%20formulation
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engines.5 To the extent homeowners react to this announcement immediately, this may 
subsequently impact their willingness-to-pay for housing if they anticipate the regulation 
may have an impact on the level of aircraft noise exposure nearby. 
 
Our focus is on examining how noise levels impact house prices, as well as the 
distribution of the effects across groups.  We use noise data at the Census tract level 
across states in the contiguous United States for 2016 and 2018.  While this is a brief 
period of coverage for road and aviation noise, setting a baseline for future studies is 
important. There is also substantial variation over space with over 73,000 Census tracts 
in the continental U.S. for which we have noise data in each year.   
 
To address heterogeneity in the relationships between demographics, noise, and house 
prices, we use a quantile regression approach, together with the above-described FAA 
announcement in 2017 mandating quieter aircraft engines. This quasi-experiment 
enables us to implement a difference-in-differences approach to discern how the causal 
relationships differ for various housing price quantiles. We find that in tracts with higher 
Black population (holding constant other demographic variables and housing 
characteristics), the regulation had a significant positive effect on house prices in the 
noisier tracts (i.e., with average aircraft noise of at least 50 LAeq). Whether or not these 
house price benefits were an intended consequence of the regulation, it is interesting 
that this statistical significance only holds for the higher-priced houses (i.e., those in the 
higher quantiles). In contrast, in tracts with higher Hispanic population, the sign of the 
effect was opposite, and this particular statistical significance is robust throughout the 
25th, 50th, and 75th house price quantiles.  
 
The remainder of this paper proceeds as follows. First, we thoroughly survey the 
literature of past research on the related topics of racial and ethnic demographics, 
house prices, and noise. A part of this literature review covers quantile regression, with 
some limited research on noise in the context of a quantile approach. Then we describe 
our data and methods, including a discussion of noise-bearing coefficients and curves in 
the context of our problem. These measures are constructed in a manner similar to Gini 
coefficients and Lorenz curves. We present some summary results of the noise-
inequality coefficients and some examples of the noise-inequality curves (with a set of 
curves for all states in both 2016 and 2018 available in an appendix). Finally, we 
present our quantile regression results. We conclude by summarizing our findings and 
offering some potential housing policy implications of our results. 

 

 
 

5 https://www.federalregister.gov/documents/2017/10/04/2017-21092/stage-5-airplane-noise-
standards#:~:text=The%20new%20Stage%205%20noise%20standard%20applies%20to,55%2
C000%20kg%29%20on%20or%20after%20December%2031%2C%202020. 
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Literature Review  

Noise and Inequality 
 
The literature focused on the inequality of sound remains rather limited.  A recent review 
by Trudeau and Guastavino (2021) identified 22 studies, the majority of which focused 
on areas not in the United States.  The current review will highlight US studies, some of 
which were not identified by Trudeau and Guastavino, directly related to our study.  
Specifically, we explore the connection between demographic and socioeconomic 
characteristics to noise and noise inequality.  In terms of geography, some are based on 
metropolitan areas, one is based on a state, and others are nationally based. 
 
First, we examine a few studies based on metropolitan areas.  Generally, airport noise is 
stressed.  Four such studies are related directly to the current study – Ogneva-
Himmelberger and Cooperman (2010), Sobotta et al. (2007), Cohen and Coughlin 
(2012), and Nega et al. (2013). 
 
Ogneva-Himmelberger and Cooperman (2010), using Boston's Logan International 
Airport, find that minority and lower-income populations are subjected to relatively 
higher noise levels than their counterparts.  Sobotta et al. (2007) regress airport noise in 
Phoenix, expressed as a qualitative dependent variable, on various independent 
variables, including the percentage of neighborhood population that is Hispanic.  They 
find that households in neighborhoods with a greater Hispanic population were 
subjected to higher noise levels than households in other neighborhoods. 
 
Following techniques in McMillen and McDonald (2004), Cohen and Coughlin (2012) 
estimate ordered probit locally weighted regressions (OPLWR) to explore the issue of 
spatial heterogeneity in the context of the determinants of airport noise in Atlanta.  
Cohen and Coughlin (2012) find notable differences in parameter estimates for different 
houses in their sample with the OPLWR estimates. In particular, the sign on the 
coefficient for each explanatory variable contains some positive and some negative 
values. Also, compared to an ordered probit model, the mean of the magnitudes of the 
coefficients for some of the other explanatory variables is larger with the OPLWR model, 
while for other coefficients the mean is smaller.  These differences between the OPLWR 
and ordered probit results imply that focusing exclusively on an ordered probit model for 
the determinants of noise can lead to biased estimates in our context due to ignored 
heterogeneity among individual houses in our sample. Overall, the heterogeneity over 
the relatively small area examined precluded any environmental-justice generalizations 
with respect to either the black or Hispanic populations. 
  
The fourth metropolitan-based study is focused on the Twin Cities.  Nega et al. (2013) 
uses spatial econometric techniques to examine median noise levels in block groups.  
Controlling for spatial autocorrelation, they found noise as related to a number of 
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demographic and socioeconomic variables.  Specifically, higher levels of noise were 
related to lower levels of household income, lower levels of home values, higher 
percentage levels of non-white population, and lower percentage levels of population 
less than 18 years old. 
 
Moving to a larger geography, prior work has developed a measure of noise inequality 
for the state of Georgia and its metropolitan areas (Cohen et al., 2019). Cohen et al. 
(2019) use various indicators to examine the relative noise burdens from road and air 
traffic noise of Whites, Blacks, and Hispanics in Georgia, both state-wide and by 
metropolitan area.  They found that Whites bear disproportionately less noise than 
either Blacks and Hispanics and that Blacks tend to experience relatively more traffic 
noise than Hispanics.  Especially noteworthy is that in areas where there is increased 
likelihood of health-damaging noise Blacks and Hispanics bear disproportionately larger 
shares of noise.  However, exceptions to these general findings were also found.  In 
some Census tracts, roughly one in twenty for Blacks and one in five for Hispanics, 
larger Black and Hispanics population shares are associated with relatively less noise. 
In the present paper, we apply the Cohen et al. (2019) methodology to tracts in 48 U.S. 
states plus the District of Columbia, for the years 2016 and 2018, in generating noise-
inequality curves and coefficients that are similar, but not identical, to Lorenz curves and 
Gini coefficients. 

 
Last, similar to the current study, Casey et al (2017) and Collins et al. (2020) are nation-
wide studies.  Using noise estimates in census block groups, Casey et al. (2017) found 
that nighttime and daytime noise levels were higher in block groups containing higher 
proportions of non-white and lower socioeconomic status residents.  Moreover, block 
groups in more highly segregated metropolitan areas faced higher estimated noise 
exposure. Similarly, Collins et al. (2020) found higher noise exposure in census tracts 
characterized by lower socioeconomic status and greater proportions of Blacks, 
Hispanic, Asian, Pacific Islander, and middle/working-aged residents. 
 

Quantile Regressions in Housing Research 

 
Given the large degree of heterogeneity in noise exposure throughout the U.S., with 
some urban areas having noise levels that are close to uninhabitable but rural areas 
with virtually no noise, it is desirable to use an econometric approach that can allow for 
heterogeneous effects. Methodologically, we employ quantile regressions to investigate 
differences in exposure to noise pollution across varying levels of this disamenity. In 
general, the linear quantile regression model can be written as follows: 
 

𝑦𝑦 = 𝑋𝑋𝜆𝜆𝑞𝑞 + 𝜖𝜖𝑞𝑞 
Where 
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Here, 𝑝𝑝𝑞𝑞(. )  represents the tilted absolute value function. The solution to this 
minimization problem yields a vector of marginal effects of X on y for each quantile (q).6 
𝜆𝜆0.5 , for example, represents the correlation of X and y at its median, whereas 𝜆𝜆0.1 
measures the correlation at the 10th percentile of y. 
  
Quantile regressions have a long-standing history in the econometric literature7 and 
have been applied extensively in the context of real estate and spatial economics 
(Coulson and McMillen, 2007; Liao and Wang, 2012; McMillen, 2015)8 as well as air 
and transport-related noise pollution (Tonne et al., 2018).  McMillen (2008), for example, 
studies changes in the house price distribution in Chicago between 1995 and 2005. 
Using a quantile regression, McMillen (2008) shows that the distributional shift leading 
to a larger right-tail in the distribution cannot be explained by location or other home 
characteristics. Instead, the distributional shift is caused by systematic variations in 
appreciation rates across lower to higher valued properties that lead to faster housing 
wealth accumulation to owners of high-priced homes. 
  
Zietz et al. (2008) apply a quantile regression to consider the market segmentation and 
variation in the valuation of housing attributes across the conditional property price 
distribution in Orem/Provo, Utah. In this context the authors find evidence of significant 
systematic variation in the implicit prices of house attributes across low- to high-value 
homes. The impact of an additional square foot of living space, for example, is much 
larger for already higher-valued homes than for lower-price houses. Further, the authors 
conclude that the quantile effects dominate the spatial autocorrelations effects. 
  
A more recent application of quantile regressions in the context of house sale prices 
was done by Waltl (2019) who studies variations in appreciation rates across price 
segments and locations in Sydney, Australia. Similar to the previous work, the author 

 
6 For further technical details see Koenker and Bassett (1978). 

 
7 The methodology was first introduced by Koenker and Bassett (1978). Early influential 
applications include the work by Chamberlain (1994) or Buchinsky (1994). Koenker and Hallock 
(2001) provide an excellent overview of the methodology and applications in various contexts. 

 
8 For an excellent introduction to quantile regression and its application to spatial data see 
McMillen (2012). 
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finds significant differences in appreciation rates across submarkets and that boom-and-
bust cycles are primarily driven by price developments in suburban low-priced houses. 
Tonne et al. (2018) apply quantile regressions in the context of rail and aircraft noise 
pollution in London, England. The authors focus on a sample of residents exposed to 
noise pollution above 50dB. In general, they find that the direction of inequalities in 
noise exposures was highly variable with respect to sociodemographic characteristics 
and the type of noise. For example, the authors find little evidence of variations in 
exposure to road noise across income groups below the 75th exposure quantile. Above 
this threshold, however, the authors provide some evidence to suggest that households 
with higher income are less exposed to the most significant levels of noise pollution. 
Moreover, Asian participants appeared to be more exposed to road traffic noise, while 
white individuals with high household income were more likely exposed to aircraft noise. 
  
As suggested by the findings in Tonne et al. (2018), the relationship of inequality in 
exposure to noise pollution is very complex and non-linear. Quantile regression analysis 
provides a framework to tease out these non-linearities across the entire noise pollution 
distribution. Similar to Tonne et al. (2018), we apply this methodology to study the 
inequality-in-noise-pollution-exposure relationship but broaden the study area to the 
entire continental U.S. over a two-year sample.  

 
Data and Analytical Methods 
  

Before exploring the complexities of the noise-ethnicity-house-price relationship via 
regressions, we provide a summary measure of the noise borne by one group relative to 
other groups as well as to the national average. To this end, we use noise-inequality 
coefficients and curves. These coefficients and curves are constructed in a manner 
analogous to Gini coefficients and Lorenz curves. These coefficients and curves were 
used previously in Cohen et al. (2019), although focused on a much narrower 
geographic area (the state of Georgia) and only for one year of data. As such, these 
constructs provide numerical and visual indicators of noise inequality.   

On the horizonal axis is a measure of noise that orders census tracts in percentiles from 
the one with the most noise to the census tract with the least noise.  On the vertical axis 
is the cumulative percentage of the relevant population.  The reference line uses the 
entire population of the census tracts under consideration. Similar to the construction of 
a Lorenz curve in the context of income inequality, this 45-degree line indicates noise 
equality.  Figure 1 illustrates a specific situation with a noise-bearing curve. 
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Figure 1 – Noise-Inequality Curve: Less-than-Proportionate  

  

  
In this figure the noise-inequality curve for a specific group lies below the reference line.  
At the lowest noise percentiles the noise borne by this group is less than that borne by 
the population. Let A be the area between the noise-bearing curve and the reference 
line and B be the area below the noise-bearing curve.  The noise-bearing coefficient is 
defined as follows: NBC = A/(A + B).  In the limiting cases, a coefficient of 1 indicates 
this group bears no noise, while a coefficient of 0 indicates the group bears noise 
proportionate to its size.  Thus, the coefficient must lie between 0 and 1.  In this 
illustration, the specific group bears a less-than-proportionate share of the noise. If A 
were to shrink, then noise inequality declines. 

Now, as represented in Figure 2, consider the case where the noise-bearing curve lies 
above the reference line. Thus, A is the area above the reference curve and B is the 
entire area below the reference line.  In this case, the noise-inquality coefficient is 
defined as follows: NBC = -A/B.  In the limiting cases, a coefficient of -1 indicates that 
the specific group bears all the noise, while a coefficient of 0 indicates that the specific 
group bears noise proportionate to its size.  Thus, in this case the coefficient must lie 
between 0 and -1. The group bears a more-than-proportionate share of the noise.  If A 
were to shrink, then noise inequality declines. 
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Figure 2 – Noise-Inequality Curve: More-than-Proportionate 

  

  

In summary, the noise-inequality coefficient for a specific group may range from -1 to 
+1.9 Values near -1 indicate that the group bears a very large share of noise, while 
values near +1 indicate that the group bears a very small share of noise.  Values near 0 
indicate that the group bears a roughly proportionate noise share (i.e., equality).  

 

Data 

 
To investigate the relationship between exposure to transport-related noise pollution and 
home values as well as ethnicity we construct a novel dataset that combines information 
on 2016 and 2018 air and road noise pollution published by the U.S. Department of 
Transportation’s Bureau of Transportation Statistics with Census tract data on local 
housing markets and socioeconomic characteristics of local residents. The latter data 
are sourced from the American Community Survey (ACS) published by the US Census 

 
9 It is also possible that there can be times when A does not lie completely above or below the 
reference line.  The calculation of the numerator is a net of the positive “A” area beneath the line 
and the negative “A” area above the line. Meanwhile, the denominator is the area beneath the 
reference line.   
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Bureau. Noise pollution statistics are available for 2016 and 2018 and are linked to the 
ACS data for those years with a spatial join, leading to separate tract-level noise and 
demographics estimates for over 70,000 tracts in each of the 2 years.  
 
Figure 3: Air & Road Noise Quantiles 

 

 
Figure 3 summarizes the distribution of air and road noise across the contiguous United 
States. The data reveal that the vast majority of census tracts experience very little 
transport-related noise pollution. More specifically, 90 percent of US census tracts are 
subject to approximately 40 dB LAeq or less average daily noise pollution. Above this 
threshold noise ranges widely. While a census tract at the 90th percentile of noise 
experiences 40 dB LAeq, the noisiest locations are subject to more than 75 dB LAeq in 
at least one of the two sample years. 
 
For several of these heavily noise polluted locations, including the five noisiest tracts 
with an average 70 dB LAeq or above, the Census data indicate no population. Table 1 
lists the top 30 census tracts (and associated states and counties) with the highest 
levels of noise pollution averaged across the two years conditional on people living in 
these tracts. The most noise-polluted census tracts where people actually live tend to 
be located in the states of Texas, New York, and California. But the list also includes 
census tracts located in Florida, Georgia, Illinois, Mississippi, Missouri, Nevada, New 
Jersey, Tennessee, Virginia, and Washington. Interestingly, aircraft noise appears to be 
the primary source of noise pollution in these highly polluted census tracts. Road noise 
tends to be a lesser contributing factor (even if we do not condition on positive 
population). But road noise tends to be more constant over time, while aircraft noise is 
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much more intense for very brief periods and then there is typically much less noise in 
between flyovers. 
 
More specifically, San Diego County, CA, Bronx County, NY and Queens County, NY all 
have tract(s) with at least 50 dB LAeq10 in both road noise and air noise. The tract in 
San Diego has a black population share of less than 5 percent and Hispanic population 
share of 14 percent. In contrast, the tract in the Bronx County has 21 percent Black 
population and 54 percent Hispanic population, while the tract in Queens County has 
nearly 13 percent black and 14 percent Hispanic residents. It is also noteworthy that in 
some instances, the numbers for the individual race/ethnicity breakdowns do not add to 
100 percent. This is because there are other race/ethnicity categories (such as Asian 
and Native American and others) that are not included in this table, for ease of 
presentation. Moreover, some Hispanic residents also identify as White, so there is 
some overlap between the numbers across categories. 
 
Table 1 also shows that population, density, income, and home values, as well as 
population shares of Black, Hispanic/Latino, and White ethnicities vary greatly across 
these highly noise-polluted locations. While some census tracts have just 5 residents, 
others are heavily populated with over 5,000 residents. Similarly, the median family 
income ranges from around $25,000/year to over $100,000/year, whereas median home 
values range from just under $35,000 per home to over $800,000 per home. Moreover, 
these most heavily noise-polluted census tracts have diverse populations. The White 
population share, for example, ranges from 0% to 100%. Similarly, the Black population 
share in these locations varies from 0% to 95%.  

 

 

 

 

 

 

 

 
10 According to the BTS, the national transportation noise map is developed using a 24-hr 
equivalent A-weighted sound level noise metric denoted by LAeq. As such, the noise metric 
represent the approximate average noise energy due to transportation noise sources over a 24-
hour period at the receptor locations where noise is computed. 
https://rosap.ntl.bts.gov/view/dot/53773 

 

https://rosap.ntl.bts.gov/view/dot/53773
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Table 1: Top 30 Census Tracts with Highest Noise Pollution 
s

 

Figures 4a through 4d shed more light on some of these noise pollution correlations. 
Based on the full sample, Figure 3a, for example, plots the combined air and road 
noise, measured in dB LAeq, against census-tract median home values. As expected, 
the graph shows a large mass of census tracts with median home values below 
$500,000 with noise pollution ranging from 0 to over 60dB LAeq. Interestingly a 
quadratic fit shows a non-linear, “inverse U” relationship between home values and local 
noise pollution. The graph shows that neighborhoods with low noise pollution can be 
associated with lower valued homes or the highest value homes. The tipping point is 
centered around a median value of $1,000,000 per home. Transport-related noise is, of 
course, linked to human activity. On the one end, low noise pollution may be indicative 
of an area with little human and economic activity and therefore little housing demand 
resulting in lower priced homes. As this activity increases, so do home values. However, 
there is a tipping point after which low noise in high activity areas becomes a desired 
amenity that commands a house sale price premium helping explain the fact that more 
of the highest value properties tend to be located in the quietest census tracts. 
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Figure 4a: Air & Road Noise – Home Value Correlation 

 

 

Figures 4b through 4d plot the combined air and road noise pollution experienced in 
each census tract against the local white, black, and Hispanic/Latinx population shares. 
The fitted quadratic curves reveal a few interesting patterns. First, each plot reveals an 
“inverse U” shaped relationship suggesting that quieter neighborhoods are also home to 
less diverse populations. This relationship is most pronounced for the Hispanic/Latino  
and the White populations compared with the Black populations. Second, 
neighborhoods with larger shares of white residents experience less noise pollution on 
average. In contrast, neighborhoods with larger shares of Black residents do not see a 
pronounced decline in typical noise pollution. 

Overall, these figures provide some initial insight into the complexities of the 
relationships between transport-related noise pollution and local housing market or 
socioeconomic characteristics. The 95 percent confidence intervals are highlighted in 
yellow. These confidence intervals are very narrow in some parts of the curves, which is 
why it appears as if there is no confidence interval in those areas.  
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Figure 4b: Air & Road Noise – White Population Share Correlation 

 

Figure 4c: Air & Road Noise – Black Population Share Correlation 
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Figure 4d: Air & Road Noise – Hispanic/Latino Population Share Correlation 

 

Results- Noise-Inequality Curves and Coefficients  

Noise-inequality coefficient maps and curves 

Figures 5a and 5b below are graphical depictions of the noise inequality curves for 2016 
and 2018, respectively, at a national level of aggregation. These figures are broken out 
by the total population, White population, Black population, and Hispanic population. 
The curves for the Black population and the Hispanic population do not appear to be 
dramatically different in the two years. But the curve for the White population seems to 
be closer to the total population in 2018 than in 2016, implying the less than 
proportionate White population exposure in 2018 is less pronounced than in 2016.    
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Figure 5a – 2016 National Noise Inequality Curve, by Race/Ethnicity 

 

Figure 5b – 2018 National Noise Inequality Curve, by Race/Ethnicity 
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While the national noise inequality estimates show greater than proportionate exposure 
for the Black and Hispanic populations, it would be of interest to observe the extent to 
which this inequality holds up at the sub-national levels. We calculated the noise-
inequality coefficients on an average basis, state-by-state, to obtain a sense of which 
demographic groups experience a more/less equal distribution of noise within each of 
the states. Figures 6a and 6b show the average noise-inequality coefficients for each 
demographic group (White, Black, and Hispanic residents), in each year (2016 and 
2018), respectively.  

Figure 6a: 2016 Noise-Inequality Coefficients, by State 

 

Figure 6b: 2018 Noise-Inequality Coefficients, by State 

 

Note: South Dakota (SD) is missing data from 2018 (in Figure 7b). 
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To determine the overall (U.S.-wide) noise exposure for each of the 3 groups, we 
calculate that New York has the highest overall average noise exposure (averaged over 
the two years, 2016 and 2018), while West Virginia is the quietest state. The most 
unequal state for noise exposure by Black residents is Missouri, while the 
corresponding most unequal state for Hispanic/Latinx residents is New Hampshire, with 
Rhode Island and Connecticut close behind. 11  

A full set of noise inequality curves at the state-level, annually in 2016 and 2018, is 
available in an appendix. 

Results – Econometrics 

We first present difference-in-differences hedonic regressions, with tract-level price as 
the dependent variable. We include in our sample all tracts with non-zero noise levels, 
and the treatment group is those tracts with at least 50 LAeq of aircraft noise in one or 
both of the two year (2016 and 2018).  

Overall, we find the treatment effect is statistically insignificant. This is robust to 
clustering standard errors at the county level, and to including a variety of covariates 
such as the average number of homes in the tract that have 2 bedrooms, 3 bedrooms, 
…, and share with 5 or more bedrooms; controlling for road noise, average age of the 
homeowners, family size, share of housing that is one-unit and share that is multi-unit; 
and share that is renter-occupied. While these covariate estimates are not shown in the 
results tables, all except renter-occupied share are statistically significant. These results 
are in the second column of Table 2.  

 

 

 

 

 

 

 

 
 

11 While at first glance there appears to be some discrepancies between Table 1 and Figures 7a and 7b, 
the estimates in Table 1 are at the census tract level, while Figures 6a and 6b show the noise inequality 
coefficients aggregated for entire U.S. states. 
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Table 2 – Hedonic Difference-In-Differences Regression Results 
 (1) (2) 
Dependent Variable: Log house value Log house value 
Air noise > 50 LAeq 0.00385 0.00579 
 (0.37) (0.55) 
   
Air noise > 50 LAeq × Post-2017 -0.0317 -0.0132* 
 (-0.38) (-1.69) 
   
% White×Air noise > 50 LAeq×Post-2017 0.00122  
 (1.43)  
   
% Black×Air noise > 50 LAeq×Post-2017 0.00216**  
 (2.33)  
   
% Hispanic×Air noise > 50 LAeq×Post-2017 -0.0106***  
 (-9.27)  
   
% Other×Air noise > 50 LAeq×Post-2017 0.000000133  
 (0.22)  
   
Road noise > 50 LAeq  0.204*** 0.201*** 
 (5.76) (5.54) 
   
N 27082 27082 
R2 0.615 0.613 
Notes: t statistics in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
Regressions include county and year fixed effects;  
Standard errors are clustered at the Census tract level. 
 

We next turn to the set of results that include both the treatment effect, and an 
additional set of treatment effects with interaction terms for the percent of the population 
that are Black, percent of the population that are White, percent that are Hispanic, and 
percent that are “other”. In these results (shown in column 1 of Table 2), the interaction 
between the percent White and the treatment effects is insignificant. But the interaction 
between the percent Black and the treatment effects is positive and significant. This 
implies that when moving from tracts with less Black population to more Black 
population, the effect of the 2017 noise regulation leads to higher house prices. The 
opposite can be said when moving from tracts with less Hispanic population to more 
Hispanic population, that is, the effect of the 2017 noise regulation in those tracts leads 
to lower house prices. There is no significant effect of this aircraft noise regulation from 
moving from tracts with lower to higher White populations. 

The nonlinearities between noise and house values are apparent in Figure 4a above. 
Therefore, it might shed additional light on these relationships if we were to estimate 
these difference-in-differences models with quantile regressions. Given the flexibility of 
quantile regressions in understanding heterogeneity in the data, and the lack of other 
studies that have already used these approaches to consider the same dataset as ours, 
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we focus on quantile regressions for our regression analysis. Using quantile regressions 
enables us to uncover heterogeneity that is not apparent with OLS. These results are 
shown in Table 3.  
 
Specifically, when running quantile regressions, we see that there is significant 
heterogeneity among the different demographic groups. For instance, in the 25th and 
50th quantiles, there is an insignificant coefficient on the interaction term between the 
Black percent of population and the treatment variables. But for the 75th quantile, we 
see that there is a significant positive relationship on the interaction between the 
treatment variables and the Black population share with respect to housing prices. For 
the Hispanic population interacted with the treatment variables, that coefficient estimate 
is negative throughout for all quantiles that we have estimated, and the magnitude of 
the coefficient is fairly constant in the range of around -0.01. This indicates that while 
there’s not much heterogeneity in the price effects due to this policy change in 2017 for 
Hispanic households, there is heterogeneity for Black households. In other words, as 
the Black population percentage in a tract increases, we see that higher valued houses 
are impacted more by this policy change, than lower valued houses. The coefficient on 
the interaction between White population and the treatment effects are insignificant in all 
three quantiles estimated (i.e., the 25th, 50th, and 75th quantiles). The base treatment 
effect is insignificant throughout. This implies that considering heterogeneity among 
racial and ethnic demographics, as well as with differences among house prices across 
tracks, are important in assessing the impacts of this aircraft engine noise reduction 
policy. 
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Table 3 – Difference-in-Differences Quantile Regression Results (for the 25th, 50th, and 75th quantiles) 

Dependent Variable Log house value Log house value 
q25   
Air noise > 50 LAeq 0.0228 0.0212** 
 (1.50) (2.11) 
   
Air noise > 50 LAeq × Post-2017 0.172 -0.00574 
 (1.26) (-0.28) 
   
% White×Air noise > 50 LAeq×Post-2017 -0.00115  
 (-0.79)  
   
% Black×Air noise > 50 LAeq×Post-2017 -0.000954  
 (-0.72)  
   
% Hispanic×Air noise > 50 LAeq×Post-2017 -0.00933***  
 (-5.73)  
   
% Other×Air noise > 50 LAeq×Post-2017 -0.000000168  
 (-0.17)  
   
Road noise > 50 LAeq  -0.203*** -0.223*** 
 (-4.98) (-5.48) 
q50   
Air noise > 50 LAeq -0.000467 0.00397 
 (-0.02) (0.20) 
   
Air noise > 50 LAeq × Post-2017 0.0409 -0.00318 
 (0.33) (-0.11) 
   
% White×Air noise > 50 LAeq×Post-2017 0.000380  
 (0.30)  
   
% Black×Air noise > 50 LAeq×Post-2017 0.00180  
 (1.54)  
   
% Hispanic×Air noise > 50 LAeq×Post-2017 -0.0123***  
 (-5.82)  
   
% Other×Air noise > 50 LAeq×Post-2017 0.000000734  
 (0.77)  
   
Road noise > 50 LAeq  -0.137*** -0.134*** 
 (-3.88) (-2.75) 
q75   
Air noise > 50 LAeq -0.0310** -0.0215 
 (-2.18) (-0.99) 
   
Air noise > 50 LAeq × Post-2017 -0.0832 0.00707 
 (-0.70) (0.27) 
   
% White×Air noise > 50 LAeq×Post-2017 0.00203*  
 (1.66)  
   
% Black×Air noise > 50 LAeq×Post-2017 0.00445***  
 (2.72)  
   
% Hispanic×Air noise > 50 LAeq×Post-2017 -0.0111***  
 (-6.28)  
   
% Other×Air noise > 50 LAeq×Post-2017 0.000000435  
 (0.44)  
   
Road noise > 50 LAeq  -0.0347 -0.0205 
 (-0.88) (-0.59) 
N                         27,082                                                      27,082   
Notes: t statistics in parentheses;  
* p<0.10, ** p<0.05, *** p<0.01            
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Conclusion 

In sum, exposure to noise pollution may be a source of racial and demographic 
inequality rooted in income and wealth. A potential mechanism of the apparent 
inequality may be the varying affordability of homes in some neighborhoods. In past 
studies, noise has been associated with lower property values and poor health 
outcomes. Less research has demonstrated the heterogeneity in how house prices are 
correlated with noise, average demographics of the neighborhoods, and their 
interactions. Differences between road noise and aircraft noise are also important to 
consider, given that aircraft noise is very intense for a short amount of time, while road 
noise is more consistent but typically at a lower intensity. Finally, a quasi-natural 
experiment might allow for some analysis of causality between noise and house prices, 
which could add to the existing literature. 

In this paper, we have tackled these issues using a relatively new dataset with multiple 
years of observations on noise levels for the entire U.S., which also breaks down the 
noise levels into separate estimates for aircraft opposed to road noise. We merge the 
noise data, at the Census tract level, with demographics and house prices data at the 
Census tract level, for the years 2016 and 2018. We present the data in multiple 
dimensions.  

Specifically, we apply a set of noise-inequality curves and coefficients, which are based 
on the approach of Cohen et al. (2019). This enables us to demonstrate how the 
average burden of noise falls unequally in some locations (that is, U.S. states) but more 
equitably in others. We present graphs, tables, and maps of these noise inequality 
estimates. Maine, Missouri, Oregon, Vermont, and Pennsylvania are among the states 
with the greatest degree of inequality among Black residents. This inequality becomes 
worse for some states (e.g., Maine) in 2018 compared with 2016.  

In terms of empirics, we implement a difference-in-differences model where the “event” 
date is in 2017, based on the announcement of a new Federal Aviation Administration 
announcement of a new requirement for lower aircraft engine noise. We explore how 
house prices after this event, for tracts with noise levels of at least 50 LAeq, are 
impacted differently, and we find no direct effect. But when we break out the treatment 
effects by interacting them with the population percent that is Black, White, and 
Hispanic, we find a significant positive effect on house prices when Black population 
increases, and a significant negative effect on house prices when Hispanic population 
increases. This implies that perhaps the aircraft engine noise regulation is one approach 
in the direction of achieving environmental justice in tracts with higher Black population, 
while the evidence is the opposite in tracts with higher Hispanic population.  

Since prices vary dramatically across tracts and within neighborhoods with different 
demographics, we explore a quantile regression approach to drill down deeper into the 
causal relationships between how the aircraft engine noise regulation impacts house 
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prices differently across demographically diverse neighborhoods. While we find the 
positive treatment effect for the interaction with the Black population in a tract holds for 
the higher quantile tracts, the negative treatment effects for the interactions with 
Hispanic population is consistently significant across the 25th, 50th, and 75th quantiles of 
house prices. This finding is particularly intriguing because it implies that in tracts with 
higher Black population, the aircraft engine noise policy announcement only significantly 
enhances house prices in the tracts with already relatively high house prices. This 
finding leads to the question of how tracts with large Black populations that are renters 
are impacted by the noise regulation announcement.  

Future work should explore the extent to which Black residents own homes in the tracts 
with the 75th quantile of home prices, opposed to the 25th quantile. Also, an examination 
of the impacts of this aircraft noise regulation announcement on apartment rental prices 
could be of interest. Although some other work (such as Breidenbach et al., 2021) have 
shown that apartment rents react immediately from announcements that impact the 
current noise levels, it is not obvious how such announcements for future noise level 
changes would impact apartment prices. 
The fact that these inequality patterns arise, even when controlling for other covariates, 
suggests that there may be other mechanisms at play. Possible explanations may 
include hysteresis arising from historically discriminatory land use policies or transport 
infrastructure investments, among others.  
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Appendix 
Table A1: State-level ranking of Air & Road Noise Pollution and Inequality in Noise 

Pollution Exposure, Averaged over 2016 and 2018 Noise Values 

 


